We now examine an alternative to direct proof called **contrapositive proof**. Like direct proof, the technique of contrapositive proof is used to prove conditional statements of the form “If P, then Q.” Although it is possible to use direct proof exclusively, there are occasions where contrapositive proof is much easier.

5.1 Contrapositive Proof

To understand how contrapositive proof works, imagine that you need to prove a proposition of the following form.

Proposition If P, then Q.

This is a conditional statement of form $P \Rightarrow Q$. Our goal is to show that this conditional statement is true. Recall that in Section 2.6 we observed that $P \Rightarrow Q$ is logically equivalent to $\sim Q \Rightarrow \sim P$. For convenience, we duplicate the truth table that verifies this fact.

$$
\begin{array}{cccccc}
P & Q & \sim Q & \sim P & P \Rightarrow Q & \sim Q \Rightarrow \sim P \\
T & T & F & F & T & T \\
T & F & T & F & F & F \\
F & T & F & T & T & T \\
F & F & T & T & T & T \\
\end{array}
$$

According to the table, statements $P \Rightarrow Q$ and $\sim Q \Rightarrow \sim P$ are different ways of expressing exactly the same thing. The expression $\sim Q \Rightarrow \sim P$ is called the **contrapositive form** of $P \Rightarrow Q$.

Do not confuse the words *contrapositive* and *converse*. Recall from Section 2.4 that the *converse* of $P \Rightarrow Q$ is the statement $Q \Rightarrow P$, which is not logically equivalent to $P \Rightarrow Q$.

Since $P \Rightarrow Q$ is logically equivalent to $\sim Q \Rightarrow \sim P$, it follows that to prove $P \Rightarrow Q$ is true, it suffices to instead prove that $\sim Q \Rightarrow \sim P$ is true. If we were to use direct proof to show $\sim Q \Rightarrow \sim P$ is true, we would assume $\sim Q$ is true use this to deduce that $\sim P$ is true. This in fact is the basic approach of contrapositive proof, summarized as follows.

Outline for Contrapositive Proof

<table>
<thead>
<tr>
<th>Proposition</th>
<th>If P, then Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Proof.$</td>
<td>Suppose $\sim Q$.</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>Therefore $\sim P$.</td>
<td>■</td>
</tr>
</tbody>
</table>

So the setup for contrapositive proof is very simple. The first line of the proof is the sentence “Suppose Q is not true.” (Or something to that effect.) The last line is the sentence “Therefore P is not true.” Between the first and last line we use logic and definitions to transform the statement $\sim Q$ to the statement $\sim P$.

To illustrate this new technique, and to contrast it with direct proof, we now prove a proposition in two ways: first with direct proof and then with contrapositive proof.

Proposition Suppose $x \in \mathbb{Z}$. If $7x + 9$ is even, then x is odd.

Proof. (Direct) Suppose $7x + 9$ is even. Thus $7x + 9 = 2a$ for some integer a. Subtracting $6x + 9$ from both sides, we get $x = 2a - 6x - 9$. Thus $x = 2a - 6x - 9 = 2a - 6x - 10 + 1 = 2(a - 3x - 5) + 1$. Consequently $x = 2b + 1$, where $b = a - 3x - 5 \in \mathbb{Z}$. Therefore x is odd. ■

Here is a contrapositive proof of the same statement:

Proposition Suppose $x \in \mathbb{Z}$. If $7x + 9$ is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd. Thus x is even, so $x = 2a$ for some integer a. Then $7x + 9 = 7(2a) + 9 = 14a + 8 + 1 = 2(7a + 4) + 1$. Therefore $7x + 9 = 2b + 1$, where b is the integer $7a + 4$. Consequently $7x + 9$ is odd. Therefore $7x + 9$ is not even. ■
Though the proofs are of equal length, you may feel that the contrapositive proof flowed more smoothly. This is because it is easier to transform information about \(x\) into information about \(7x + 9\) than the other way around. For our next example, consider the following proposition concerning an integer \(x\):

Proposition If \(x^2 - 6x + 5\) is even, then \(x\) is odd.

A direct proof would be problematic. We would begin by assuming that \(x^2 - 6x + 5\) is even, so \(x^2 - 6x + 5 = 2a\). Then we would need to transform this into \(x = 2b + 1\) for \(b \in \mathbb{Z}\). But it is not quite clear how that could be done, for it would involve isolating an \(x\) from the quadratic expression. However, the proof becomes very simple if we use contrapositive proof.

Proposition Suppose \(x \in \mathbb{Z}\). If \(x^2 - 6x + 5\) is even, then \(x\) is odd.

Proof. (Contrapositive) Suppose \(x\) is not odd. Thus \(x\) is even, so \(x = 2a\) for some integer \(a\).

So \(x^2 - 6x + 5 = (2a)^2 - 6(2a) + 5 = 4a^2 - 12a + 5 = 4a^2 - 12a + 4 + 1 = 2(2a^2 - 6a + 2) + 1\). Therefore \(x^2 - 6x + 5 = 2b + 1\), where \(b\) is the integer \(2a^2 - 6a + 2\). Consequently \(x^2 - 6x + 5\) is odd.

Therefore \(x^2 - 6x + 5\) is not even. ■

In summary, since \(x\) being not odd (\(\sim Q\)) resulted in \(x^2 - 6x + 5\) being not even (\(\sim P\)), then \(x^2 - 6x + 5\) being even (\(P\)) means that \(x\) is odd (\(Q\)). Thus we have proved \(P \Rightarrow Q\) by proving \(\sim Q \Rightarrow \sim P\). Here is another example:

Proposition Suppose \(x, y \in \mathbb{R}\). If \(y^3 + xy^2 \leq x^3 + xy^2\), then \(y \leq x\).

Proof. (Contrapositive) Suppose it is not true that \(y \leq x\), so \(y > x\). Then \(y - x > 0\). Multiply both sides of \(y - x > 0\) by the positive value \(x^2 + y^2\).

\[
(y - x)(x^2 + y^2) > 0(x^2 + y^2) \\
yx^2 + y^3 - x^3 - xy^2 > 0 \\
y^3 + yx^2 > x^3 + xy^2
\]

Therefore \(y^3 + yx^2 > x^3 + xy^2\), so it is not true that \(y^3 + yx^2 \leq x^3 + xy^2\). ■

Proving “If \(P\), then \(Q\),” with the contrapositive approach necessarily involves the negated statements \(\sim P\) and \(\sim Q\). In working with these we may have to use the techniques for negating statements (e.g., DeMorgan’s laws) discussed in Section 2.10. We consider such an example next.
Proposition Suppose \(x, y \in \mathbb{Z} \). If \(5 \nmid xy \), then \(5 \nmid x \) and \(5 \nmid y \).

Proof. (Contrapositive) Suppose it is not true that \(5 \nmid x \) and \(5 \nmid y \). By DeMorgan’s law, it is not true that \(5 \nmid x \) or it is not true that \(5 \nmid y \). Therefore \(5 \mid x \) or \(5 \mid y \). We consider these possibilities separately.

Case 1. Suppose \(5 \mid x \). Then \(x = 5a \) for some \(a \in \mathbb{Z} \).
From this we get \(xy = 5(ay) \), and that means \(5 \mid xy \).

Case 2. Suppose \(5 \mid y \). Then \(y = 5a \) for some \(a \in \mathbb{Z} \).
From this we get \(xy = 5(ax) \), and that means \(5 \mid xy \).

The above cases show that \(5 \mid xy \), so it is not true that \(5 \nmid xy \). □

5.2 Congruence of Integers

This is a good time to introduce a new definition. It is not necessarily related to contrapositive proof, but introducing it now ensures that we have a sufficient variety of exercises to practice all our proof techniques on. This new definition occurs in many branches of mathematics, and it will surely play a role in some of your later courses. But our primary reason for introducing it is that it will give us more practice in writing proofs.

Definition 5.1 Given integers \(a \) and \(b \) and an \(n \in \mathbb{N} \), we say that \(a \) and \(b \) are congruent modulo \(n \) if \(n \mid (a - b) \). We express this as \(a \equiv b \pmod{n} \). If \(a \) and \(b \) are not congruent modulo \(n \), we write this as \(a \not\equiv b \pmod{n} \).

Example 5.1 Here are some examples:
1. \(9 \equiv 1 \pmod{4} \) because \(4 \mid (9 - 1) \).
2. \(6 \not\equiv 10 \pmod{4} \) because \(4 \nmid (6 - 10) \).
3. \(14 \not\equiv 8 \pmod{4} \) because \(4 \nmid (14 - 8) \).
4. \(20 \equiv 4 \pmod{8} \) because \(8 \mid (20 - 4) \).
5. \(17 \equiv -4 \pmod{3} \) because \(3 \mid (17 - (-4)) \).

In practical terms, \(a \equiv b \pmod{n} \) means that \(a \) and \(b \) have the same remainder when divided by \(n \). For example, we saw above that \(6 \equiv 10 \pmod{4} \) and indeed \(6 \) and \(10 \) both have remainder 2 when divided by 4. Also we saw \(14 \not\equiv 8 \pmod{4} \), and sure enough 14 has remainder 2 when divided by 4, while 8 has remainder 0.

To see that this is true in general, note that if \(a \) and \(b \) both have the same remainder \(r \) when divided by \(n \), then it follows that \(a = kn + r \) and \(b = \ell n + r \) for some \(k, \ell \in \mathbb{Z} \). Then \(a - b = (kn + r) - (\ell n + r) = n(k - \ell) \). But \(a - b = n(k - \ell) \) means \(n \mid (a - b) \), so \(a \equiv b \pmod{n} \). Conversely, one of the exercises for this chapter asks you to show that if \(a \equiv b \pmod{n} \), then \(a \) and \(b \) have the same remainder when divided by \(n \).
We conclude this section with several proofs involving congruence of integers, but you will also test your skills with other proofs in the exercises.

Proposition Let \(a, b \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \pmod{n} \), then \(a^2 \equiv b^2 \pmod{n} \).

Proof. We will use direct proof. Suppose \(a \equiv b \pmod{n} \).
By definition of congruence of integers, this means \(n \mid (a - b) \).
Then by definition of divisibility, there is an integer \(c \) for which \(a - b = nc \).
Now multiply both sides of this equation by \(a + b \).

\[
\begin{align*}
 a - b &= nc \\
 (a - b)(a + b) &= nc(a + b) \\
 a^2 - b^2 &= nc(a + b)
\end{align*}
\]

Since \(c(a + b) \in \mathbb{Z} \), the above equation tells us \(n \mid (a^2 - b^2) \).
According to Definition 5.1, this gives \(a^2 \equiv b^2 \pmod{n} \). ■

Let’s pause to consider this proposition’s meaning. It says \(a \equiv b \pmod{n} \) implies \(a^2 \equiv b^2 \pmod{n} \). In other words, it says that if integers \(a \) and \(b \) have the same remainder when divided by \(n \), then \(a^2 \) and \(b^2 \) also have the same remainder when divided by \(n \). As an example of this, 6 and 10 have the same remainder (2) when divided by \(n = 4 \), and their squares 36 and 100 also have the same remainder (0) when divided by \(n = 4 \). The proposition promises this will happen for all \(a, b \) and \(n \). In our examples we tend to concentrate more on how to prove propositions than on what the propositions mean. This is reasonable since our main goal is to learn how to prove statements. But it is helpful to sometimes also think about the meaning of what we prove.

Proposition Let \(a, b, c \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \pmod{n} \), then \(ac \equiv bc \pmod{n} \).

Proof. We employ direct proof. Suppose \(a \equiv b \pmod{n} \). By Definition 5.1, it follows that \(n \mid (a - b) \). Therefore, by definition of divisibility, there exists an integer \(k \) for which \(a - b = nk \). Multiply both sides of this equation by \(c \) to get \(ac - bc = nk \). Thus \(ac - bc = n(kc) \) where \(kc \in \mathbb{Z} \), which means \(n \mid (ac - bc) \). By Definition 5.1, we have \(ac \equiv bc \pmod{n} \). ■

Contrapositive proof seems to be the best approach in the next example, since it will eliminate the symbols \(\not| \) and \(\neq \).
Proposition Suppose \(a, b \in \mathbb{Z}\) and \(n \in \mathbb{N}\). If \(12a \not\equiv 12b \pmod{n}\), then \(n \nmid 12\).

Proof. (Contrapositive) Suppose \(n \mid 12\), so there is an integer \(c\) for which \(12 = nc\). Now reason as follows.

\[
\begin{align*}
12 &= nc \\
12(a - b) &= nc(a - b) \\
12a - 12b &= n(ca - cb)
\end{align*}
\]

Since \(ca - cb \in \mathbb{Z}\), the equation \(12a - 12b = n(ca - cb)\) implies \(n \mid (12a - 12b)\). This in turn means \(12a \equiv 12b \pmod{n}\). \(\blacksquare\)

5.3 Mathematical Writing

Now that you have begun writing proofs, it is the right time to address issues concerning writing. Unlike logic and mathematics, where there is a clear-cut distinction between what is right or wrong, the difference between good and bad writing is sometimes a matter of opinion. But there are some standard guidelines that will make your writing clearer. Some of these are listed below.

1. **Never begin a sentence with a mathematical symbol.** The reason is that sentences begin with capital letters, but mathematical symbols are case sensitive. Since \(x\) and \(X\) can have entirely different meanings, putting such symbols at the beginning of a sentence can lead to ambiguity. Following are some examples of bad usage (marked with \(\times\)) and good usage (marked with \(\checkmark\)).

 - \(A\) is a subset of \(B\). \(\times\)
 - The set \(A\) is a subset of \(B\). \(\checkmark\)
 - \(x\) is an integer, so \(2x + 5\) is an integer. \(\times\)
 - Since \(x\) is an integer, \(2x + 5\) is an integer. \(\checkmark\)
 - \(x^2 - x + 2 = 0\) has two solutions. \(\times\)
 - \(X^2 - x + 2 = 0\) has two solutions. \(\times\) (and silly too)
 - The equation \(x^2 - x + 2 = 0\) has two solutions. \(\checkmark\)

2. **End each sentence with a period.** Do this even when the sentence ends with a mathematical symbol or expression.

 - Euler proved that \(\sum_{k=1}^{\infty} \frac{1}{k^8} = \prod_{p \in P} \frac{1}{1 - \frac{1}{p^2}}\) \(\times\)
 - Euler proved that \(\sum_{k=1}^{\infty} \frac{1}{k^8} = \prod_{p \in P} \frac{1}{1 - \frac{1}{p^2}}\). \(\checkmark\)
Mathematical statements (equations, etc.) are like English phrases that happen to contain special symbols, so use normal punctuation.

3. **Separate mathematical symbols and expressions with words.** Failure to do this can cause confusion by making distinct expressions appear to merge into one. Compare the clarity of the following examples.

- Because \(x^2 - 1 = 0 \), \(x = 1 \) or \(x = -1 \).
- Because \(x^2 - 1 = 0 \), it follows that \(x = 1 \) or \(x = -1 \).

- Unlike \(A \cup B \), \(A \cap B \) equals \(\varnothing \).
- Unlike \(A \cup B \), the set \(A \cap B \) equals \(\varnothing \).

4. **Avoid misuse of symbols.** Symbols such as =, \(\leq \), \(\subseteq \), \(\in \), etc., are not words. While it is appropriate to use them in mathematical expressions, they are out of place in other contexts.

- Since the two sets are =, one is a subset of the other.
- Since the two sets are equal, one is a subset of the other.
- The empty set is \(a \subset \) of every set.
- The empty set is a subset of every set.
- Since \(a \) is odd and \(x \) odd \(\Rightarrow \) \(x^2 \) odd, \(a^2 \) is odd.
- Since \(a \) is odd and any odd number squared is odd, then \(a^2 \) is odd.

5. **Avoid using unnecessary symbols.** Mathematics is confusing enough without them. Don’t muddy the water even more.

- No set \(X \) has negative cardinality.
- No set has negative cardinality.

6. **Use the first person plural.** In mathematical writing, it is common to use the words “we” and “us” rather than “I,” “you” or “me.” It is as if the reader and writer are having a conversation, with the writer guiding the reader through the details of the proof.

7. **Use the active voice.** This is just a suggestion, but the active voice makes your writing more lively.

- The value \(x = 3 \) is obtained through the division of both sides by 5.
- Dividing both sides by 5, we get the value \(x = 3 \).

8. **Explain each new symbol.** In writing a proof, you must explain the meaning of every new symbol you introduce. Failure to do this can lead to ambiguity, misunderstanding and mistakes. For example, consider the following two possibilities for a sentence in a proof, where \(a \) and \(b \) have been introduced on a previous line.
Since \(a \mid b \), it follows that \(b = ac \). \times

Since \(a \mid b \), it follows that \(b = ac \) for some integer \(c \).

✓

If you use the first form, then a reader who has been carefully following your proof may momentarily scan backwards looking for where the \(c \) entered into the picture, not realizing at first that it came from the definition of divides.

9. **Watch out for “it.”** The pronoun “it” can cause confusion when it is unclear what it refers to. If there is any possibility of confusion, you should avoid the word “it.” Here is an example:

 Since \(X \subseteq Y \), and \(0 < |X| \), we see that it is not empty.

 ×

 Is “it” \(X \) or \(Y \)? Either one would make sense, but which do we mean?

 Since \(X \subseteq Y \), and \(0 < |X| \), we see that \(Y \) is not empty.

 ✓

10. **Since, because, as for, so.** In proofs, it is common to use these words as conjunctions joining two statements, and meaning that one statement is true and as a consequence the other true. The following statements all mean that \(P \) is true (or assumed to be true) and as a consequence \(Q \) is true also.

\[
\begin{align*}
Q & \text{ since } P \quad Q & \text{ because } P \\
& \quad Q, \text{ as } P & \quad Q, \text{ for } P & \quad P, \text{ so } Q \\
& \quad Q, \text{ for } P & \quad Q, \text{ as } P & \quad Q
\end{align*}
\]

Notice that the meaning of these constructions is different from that of “If \(P \), then \(Q \),” for they are asserting not only that \(P \) implies \(Q \), but also that \(P \) is true. Exercise care in using them. It must be the case that \(P \) and \(Q \) are both statements **and** that \(Q \) really does follow from \(P \).

\[
\begin{align*}
x \in \mathbb{N}, \text{ so } & \quad Z \times \\
x \in \mathbb{N}, \text{ so } & \quad x \in \mathbb{Z} \checkmark
\end{align*}
\]

11. **Thus, hence, therefore consequently.** These adverbs precede a statement that follows logically from previous sentences or clauses. Be sure that a statement follows them.

\[
\begin{align*}
\text{Therefore } & \quad 2k + 1. \times \\
\text{Therefore } & \quad a = 2k + 1. \checkmark
\end{align*}
\]

Your mathematical writing will get better with practice. One of the best ways to develop a good mathematical writing style is to read other people’s proofs. Adopt what works and avoid what doesn't.
Exercises for Chapter 5

A. Use the method of contrapositive proof to prove the following statements. (In each case you should also think about how a direct proof would work. You will find in most cases that contrapositive is easier.)

1. Suppose \(n \in \mathbb{Z} \). If \(n^2 \) is even, then \(n \) is even.
2. Suppose \(n \in \mathbb{Z} \). If \(n^2 \) is odd, then \(n \) is odd.
3. Suppose \(a, b \in \mathbb{Z} \). If \(a^2(b^2 - 2b) \) is odd, then \(a \) and \(b \) are odd.
4. Suppose \(a, b, c \in \mathbb{Z} \). If \(a \) does not divide \(bc \), then \(a \) does not divide \(b \).
5. Suppose \(x \in \mathbb{R} \). If \(x^2 + 5x < 0 \) then \(x < 0 \).
6. Suppose \(x \in \mathbb{R} \). If \(x^3 - x > 0 \) then \(x > -1 \).
7. Suppose \(a, b \in \mathbb{Z} \). If both \(ab \) and \(a + b \) are even, then both \(a \) and \(b \) are even.
8. Suppose \(x \in \mathbb{R} \). If \(x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 \geq 0 \), then \(x \geq 0 \).
9. Suppose \(n \in \mathbb{Z} \). If \(3 \mid n^2 \), then \(3 \mid n \).
10. Suppose \(x, y, z \in \mathbb{Z} \) and \(x \neq 0 \). If \(x \mid yz \), then \(x \mid y \) and \(x \mid z \).
11. Suppose \(x, y \in \mathbb{Z} \). If \(x^2(y + 3) \) is even, then \(x \) is even or \(y \) is odd.
12. Suppose \(a \in \mathbb{Z} \). If \(a^2 \) is not divisible by 4, then \(a \) is odd.
13. Suppose \(x \in \mathbb{R} \). If \(x^5 + 7x^3 + 5x \geq x^4 + x^2 + 8 \), then \(x \geq 0 \).

B. Prove the following statements using either direct or contrapositive proof. Sometimes one approach will be much easier than the other.

14. If \(a, b \in \mathbb{Z} \) and \(a \) and \(b \) have the same parity, then \(3a + 7 \) and \(7b - 4 \) do not.
15. Suppose \(x \in \mathbb{Z} \). If \(x^3 - 1 \) is even, then \(x \) is odd.
16. Suppose \(x \in \mathbb{Z} \). If \(x + y \) is even, then \(x \) and \(y \) have the same parity.
17. If \(n \) is odd, then \(8 \mid (n^2 - 1) \).
18. For any \(a, b \in \mathbb{Z} \), it follows that \((a + b)^3 \equiv a^3 + b^3 \pmod{3} \).
19. Let \(a, b \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \pmod{n} \) and \(a \equiv c \pmod{n} \), then \(c \equiv b \pmod{n} \).
20. If \(a \in \mathbb{Z} \) and \(a \equiv 1 \pmod{5} \), then \(a^2 \equiv 1 \pmod{5} \).
21. Let \(a, b \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \pmod{n} \), then \(a^3 \equiv b^3 \pmod{n} \).
22. Let \(a \in \mathbb{Z} \), \(n \in \mathbb{N} \). If \(a \) has remainder \(r \) when divided by \(n \), then \(a \equiv r \pmod{n} \).
23. Let \(a, b, c \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \pmod{n} \), then \(ca \equiv cb \pmod{n} \).
24. If \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(ac \equiv bd \pmod{n} \).
25. If \(n \mid \mathbb{N} \) and \(2^n - 1 \) is prime, then \(n \) is prime.
26. If \(n = 2^k - 1 \) for \(k \in \mathbb{N} \), then every entry in Row \(n \) of Pascal’s Triangle is odd.
27. If \(a \equiv 0 \pmod{4} \) or \(a \equiv 1 \pmod{4} \), then \(\binom{a}{2} \) is even.
28. If \(n \in \mathbb{Z} \), then \(4 \mid (n^2 - 3) \).
29. If integers \(a \) and \(b \) are not both zero, then \(\gcd(a, b) = \gcd(a - b, b) \).
30. If \(a \equiv b \pmod{n} \), then \(\gcd(a, n) = \gcd(b, n) \).
31. Suppose the division algorithm applied to \(a \) and \(b \) yields \(a = qb + r \). Then \(\gcd(a, b) = \gcd(r, b) \).

Contrapositive Proof